Logistic discrimination using robust estimators
نویسندگان
چکیده
Logistic regression is frequently used for classifying observations into two groups. Unfortunately there are often outlying observations in a data set, who might affect the estimated model and the associated classification error rate. In this paper, the effect of observations in the training sample on the error rate is studied by computing influence functions. It turns out that the usual influence function vanishes, and that the use of second order influence functions is appropriate. It is shown that using robust estimators in logistic discrimination strongly reduces the effect of outliers on the classification error rate. Furthermore, the second order influence function can be used as diagnostic tool to pinpoint outlying observations.
منابع مشابه
A Two-Phase Robust Estimation of Process Dispersion Using M-estimator
Parameter estimation is the first step in constructing any control chart. Most estimators of mean and dispersion are sensitive to the presence of outliers. The data may be contaminated by outliers either locally or globally. The exciting robust estimators deal only with global contamination. In this paper a robust estimator for dispersion is proposed to reduce the effect of local contamination ...
متن کاملA Robust Dispersion Control Chart Based on M-estimate
Process control charts are proven techniques for improving quality. Specifying the control limits is the most important step in designing a control chart. The presence of outliers may extremely affect the estimates of parameters using classical methods. Robust estimators which are not affected by outliers or the small departures from the model assumptions are applied in this paper to specify th...
متن کاملRobust estimation of the SUR model
This paper proposes robust regression to solve the problem of outliers in seemingly unrelated regression (SUR) models. The authors present an adaptation of S-estimators to SUR models. S-estimators are robust, with high breakdown point, and are much more efficient than other robust regression estimators commonly used in practice. Furthermore, modifications to Ruppert’s algorithm allow a fast eva...
متن کاملRobit Regression: A Simple Robust Alternative to Logistic and Probit Regression
Logistic and probit regression models are commonly used in practice to analyze binary response data, but the maximum likelihood estimators of these models are not robust to outliers. This paper considers a robit regression model, which replaces the normal distribution in the probit regression model with a t-distribution with a known or unknown number of degrees of freedom. It is shown that (i) ...
متن کاملConditionally Unbiased Bounded Influence Estimation in General Regression
Iu this paper we study robust estimation in general models for the dependence of a response y on an explanatory vector z. We extend previous work on bounded influence estimators in linear regression. Second we construct optimal bounded influence estimators for generalized linear models. We consider the class of estimators defined by an estimating equation with a conditionally unbiased score flw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005